2,145 research outputs found

    Local Gaussian operations can enhance continuous-variable entanglement distillation

    Full text link
    Entanglement distillation is a fundamental building block in long-distance quantum communication. Though known to be useless on their own for distilling Gaussian entangled states, local Gaussian operations may still help to improve non-Gaussian entanglement distillation schemes. Here we show that by applying local squeezing operations, both the performance and the efficiency of existing distillation protocols can be enhanced. We derive the optimal enhancement through local Gaussian unitaries, which can be obtained even in the most natural scenario when Gaussian mixed entangled states are shared after their distribution through a lossy-fiber communication channel.Comment: 4 figure

    Quantum mode filtering of non-Gaussian states for teleportation-based quantum information processing

    Full text link
    We propose and demonstrate an effective mode-filtering technique of non-Gaussian states generated by photon-subtraction. More robust non-Gaussian states have been obtained by removing noisy low frequencies from the original mode spectrum. We show that non-Gaussian states preserve their non-classicality after quantum teleportation to a higher degree, when they have been mode-filtered. This is indicated by a stronger negativity −0.033±0.005-0.033 \pm 0.005 of the Wigner function at the origin, compared to −0.018±0.007-0.018 \pm 0.007 for states that have not been mode-filtered. This technique can be straightforwardly applied to various kinds of photon-subtraction protocols, and can be a key ingredient in a variety of applications of non-Gaussian states, especially teleportation-based protocols towards universal quantum information processing

    Deterministic implementation of weak quantum cubic nonlinearity

    Full text link
    We propose a deterministic implementation of weak cubic nonlinearity, which is a basic building block of a full scale CV quantum computation. Our proposal relies on preparation of a specific ancillary state and transferring its nonlinear properties onto the desired target by means of deterministic Gaussian operations and feed-forward. We show that, despite the imperfections arising from the deterministic nature of the operation, the weak quantum nonlinearity can be implemented and verified with the current level of technology.Comment: 4 pages, 2 figure

    Evolutionary origin of power-laws in Biochemical Reaction Network; embedding abundance distribution into topology

    Full text link
    The evolutionary origin of universal statistics in biochemical reaction network is studied, to explain the power-law distribution of reaction links and the power-law distributions of chemical abundances. Using cell models with catalytic reaction network, we find evidence that the power-law distribution in abundances of chemicals emerges by the selection of cells with higher growth speeds. Through the further evolution, this inhomogeneity in chemical abundances is shown to be embedded in the distribution of links, leading to the power-law distribution. These findings provide novel insights into the nature of network evolution in living cells.Comment: 11 pages, 3 figure

    Near-Complete Teleportation of a Superposed Coherent State

    Full text link
    The four Bell-type entangled coherent states, |\alpha>|-\alpha> \pm |-\alpha> |\alpha> and |\alpha>|\alpha> \pm |-\alpha> |-\alpha>, can be discriminated with a high probability using only linear optical means, as long as |\alpha| is not too small. Based on this observation, we propose a simple scheme to almost completely teleport a superposed coherent state. The nonunitary transformation, that is required to complete the teleportation, can be achieved by embedding the receiver's field state in a larger Hilbert space consisting of the field and a single atom and performing a unitary transformation on this Hilbert space.Comment: 4 pages,3 figures, Two columns, LaTex2

    Dissipation-induced pure Gaussian state

    Full text link
    This paper provides some necessary and sufficient conditions for a generalMarkovian Gaussian master equation to have a unique pure steady state. The conditions are described by simple matrix equations; thus the so-called environment engineering problem for pure-Gaussian-state preparation can be straightforwardly dealt with in the linear algebraic framework. In fact, based on one of those conditions, for an arbitrary given pure Gaussian state,we obtain a complete parametrization of the Gaussian master equation having that state as a unique steady state; this leads to a systematic procedure for engineering a desired dissipative system.We demonstrate some examples including Gaussian cluster states.Comment: 8 page

    Teleportation of Nonclassical Wave Packets of light

    Full text link
    We report on the experimental quantum teleportation of strongly nonclassical wave packets of light. To perform this full quantum operation while preserving and retrieving the fragile non-classicality of the input state, we have developed a broadband, zero-dispersion teleportation apparatus that works in conjunction with time-resolved state preparation equipment. Our approach brings within experimental reach a whole new set of hybrid protocols involving discrete- and continuous-variable techniques in quantum information processing for optical sciences

    Continuous variable teleportation of single photon states

    Get PDF
    The properties of continuous variable teleportation of single photon states are investigated. The output state is different from the input state due to the non-maximal entanglement in the EPR beams. The photon statistics of the teleportation output are determined and the correlation between the field information beta obtained in the teleportation process and the change in photon number is discussed. The results of the output photon statistics are applied to the transmission of a qbit encoded in the polarization of a single photon.Comment: 14 pages, including 6 figure

    Cavity QED with high-Q whispering gallery modes

    Get PDF
    We report measurements of cavity-QED effects for the radiative coupling of atoms in a dilute vapor to the external evanescent field of a whispering-gallery mode (WGM) in a fused silica microsphere. The high Q (5 x 10^(7)), small mode volume (10^(-8) cm^(3)), and unusual symmetry of the microcavity evanescent field enable velocity-selective interactions between fields with photon number of order unity in the WGM and (N) over bar(T) similar to 1 atoms in the surrounding vapor

    Quantum teleportation of EPR pair by three-particle entanglement

    Get PDF
    Teleportation of an EPR pair using triplet in state of the Horne-Greenberger-Zeilinger form to two receivers is considered. It needs a three-particle basis for joint measurement. By contrast the one qubit teleportation the required basis is not maximally entangled. It consists of the states corresponding to the maximally entanglement of two particles only. Using outcomes of measurement both receivers can recover an unknown EPR state however one of them can not do it separately. Teleportation of the N-particle entanglement is discussed.Comment: 7 pages, LaTeX, 3 figure
    • …
    corecore